您好,欢迎来到安祺拉德官网

咨询电话:0769-89791961

行业新闻
行业新闻主页 > 新闻中心 > 行业新闻 >

基于Halcon的太阳能硅片缺陷检测-安祺拉德

来源:未知       阅读量:     时间:2019-03-14

本文主要工作如下:

1) 提出了基于 Halcon 图像处理的太阳能硅片表面缺陷检测系统的总体设计方案。

2) 简述太阳能硅片检测系统组成机构和介绍了一些基于 Halcon 图像处理的基本算法流程(如图 2所示)。

3)采用本文的检测方法可以降低劳动强度、降低生产成本,降低产品检测过程的人为因素,实现产品生产的高度自动化,提高产品检测质量,能够产生很好的社会和经济效益。

1. 引言

随着太阳能硅片制造工艺的升级,太阳能硅片变的越来越薄,因此太阳能硅片变的更容易破损。为了降低生产过程中的碎片率,同时避免太阳能电池不良对相关工艺造成的影响,需要利用机器视觉系统进行尺寸测量、隐裂检测、孔洞检测和脏污检测等,最终达到提高模组发电效率和使用寿命的目的。据估计,每条生产电池生产线由隐裂、孔洞、和脏污等缺陷带来的损失每年多达 60 万美金左右。因此,有效的缺陷检测 方法对提高太阳能硅片的工艺质量非常重要。

超声波共振扫描和接触电阻扫描这两种检测法是太阳能硅片缺陷检测的两种检测方法。超声波检测法具有无损、快速的特点,但灵敏度不高,适用于硅片和电池片;接触电阻扫描法灵敏度高,但耗时长、有破坏性,仅适用于电池片。

表面质量检测的最大难点是缺陷特征提取和缺陷分类。传统的机器视觉检测方法一般采用灰度特征、几何形状特征或者纹理特征来描述缺陷,同时神经网络和支持向量机等被广泛应用于表面缺陷检测和识别。这些方法都在某种程度上实现了表面缺陷检测和识别。但是由于太阳能硅片表面反光强烈,使得太阳能硅片带的特征提取和分类面临难题,传统的方法已无法满足生产对质量控制系统的高度要求,因此本文利用德国 MVTec 公司的视觉软件 Halcon 10.1,实现对太阳能硅片隐裂、孔洞、脏污、断栅等缺陷进行快速地检测。

2. Halcon介绍

图像处理软件 Halcon10.1 是德国 MVTec 公司开发的机器视觉软件,该软件具有强大的图像处理功能。在欧洲以及日本的工业界已经是公认具有最佳效能的机器视觉软体。该软件包含一千多个各自独立的函数,其中包含了各类滤波、色彩以及几何、数学转换、型态学计算分析、校正、分类辨识、形状搜寻等等基本的几何以及图像计算功能。该软件包含一套交互式的程序设计接口 HDevelop,可以再其中以代码直接编写、修改、执行程序,并且可以查看计算中的所有变量。利用该软件所包含的算法:边缘于线提取、分割、区域处理、边缘检测等,这些集成的功能函数可以简化对太阳能电池隐裂、孔洞、脏污、断栅等缺陷进行快速地检测。

Copyright © 2008-2018 东莞市安祺电子有限公司 版权所有
关闭
13580885898 工作日:8:00-18:00
周 日:9:00-18:00